Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672273

RESUMO

Cell therapy is at the forefront of biomedicine in oncology and regenerative medicine. However, there are still significant challenges to their wider clinical application such as limited efficacy, side effects, and logistical difficulties. One of the potential approaches that could overcome these problems is based on extracellular vesicles (EVs) as a cell-free therapy modality. One of the major obstacles in the translation of EVs into practice is their low yield of production, which is insufficient to achieve therapeutic amounts. Here, we evaluated two primary approaches of artificial vesicle induction in primary T cells and the SupT1 cell line-cytochalasin B as a chemical inducer and ultrasonication as a physical inducer. We found that both methods are capable of producing artificial vesicles, but cytochalasin B induction leads to vesicle yield compared to natural secretion, while ultrasonication leads to a three-fold increase in particle yield. Cytochalasin B induces the formation of vesicles full of cytoplasmic compartments without nuclear fraction, while ultrasonication induces the formation of particles rich in membranes and membrane-related components such as CD3 or HLAII proteins. The most effective approach for T-cell induction in terms of the number of vesicles seems to be the combination of anti-CD3/CD28 antibody activation with ultrasonication, which leads to a seven-fold yield increase in particles with a high content of functionally important proteins (CD3, granzyme B, and HLA II).

2.
Polymers (Basel) ; 15(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37571141

RESUMO

A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer of metal nanoparticles at the same time. The mechanism of oxidation of hyperbranched polyol was studied using diffuse reflectance IR spectroscopy. The process of oxidation of OH groups in G4-OH started from 90 °C and finished with the oxidation of aldehyde groups. The composition and properties of nanomaterials were determined with FT-IR and UV-Vis spectroscopy, Nanoparticle Tracking Analysis (NTA), thermogravimetric analysis (TG), powder X-ray diffraction (XRD), NMR relaxation, and in vitro biological tests. The cobalt-containing nanocomposite (CoNP) had a high colloidal stability and contained spheroid polymer aggregates with a diameter of 35-50 nm with immobilized cobalt nanoparticles of 5-7 nm. The values of R2 and R1 according to the NMR relaxation method for CoNPs were 6.77 mM·ms-1 × 10-5 and 4.14 mM·ms-1 × 10-5 for, respectively. The ratio R2/R1 = 0.61 defines the cobalt-containing nanocomposite as a T1 contrast agent. The synthesized CoNPs were nonhemotoxic (HC50 > 8 g/mL) multifunctional reagents and exhibited the properties of synthetic modulators of the enzymatic activity of chymosin aspartic proteinase and exhibited antimycotic activity against Aspergillus fumigatus. The results of the study show the unique prospects of the developed two-component method of the hyperbranched polyol process for the creation of colloidal multifunctional metal-polymer nanocomposites for theranostics.

3.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499092

RESUMO

This article shows the success of using the chemical reduction method, the polyol thermolytic process, the sonochemistry method, and the hybrid sonochemistry/polyol process method to design iron-based magnetically active composite nanomaterials in a hyperbranched polyester polyol matrix. Four samples were obtained and characterized by transmission and scanning electron microscopy, infrared spectroscopy and thermogravimetry. In all cases, the hyperbranched polymer is an excellent stabilizer of the iron and iron oxides nanophase. In addition, during the thermolytic process and hybrid method, the branched polyol exhibits the properties of a good reducing agent. The use of various approaches to the synthesis of iron nanoparticles in a branched polyester polyol matrix makes it possible to control the composition, geometry, dispersity, and size of the iron-based nanophase and to create new promising materials with colloidal stability, low hemolytic activity, and good magnetic properties. The NMR relaxation method proved the possibility of using the obtained composites as tomographic probes.


Assuntos
Ferro , Poliésteres , Poliésteres/química , Ferro/química , Magnetismo , Polímeros/química , Fenômenos Magnéticos
4.
Polymers (Basel) ; 14(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501693

RESUMO

For the first time, metal-polymer complexes have been synthesized using hyperbranched polyester polyfumaratomaleate as a matrix, the structure of which has been established by 1H NMR, IR, electron spectroscopy, and elemental analysis methods. The formation of complexes with Gd(III) and Dy(III) ions involving fumarate and maleate groups of the polyester was proved by IR and electron spectroscopy methods. It was established that the structure of the coordination units has the form of a square antiprism. The compositions and conditional logarithms of the stability constants of the complexes were determined. It was established that complexation with lanthanide ions promotes emission enhancement in the ligand.

5.
ACS Omega ; 7(3): 3073-3082, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097302

RESUMO

New 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide complexes with copper(II) bromide and lanthanum(III) nitrate were characterized using dynamic light scattering and transmission electron microscopy, with self-assembly and the morphological behavior elucidated. For the lanthanum(III) nitrate complex, the 3D crystal structure was characterized using X-ray diffractometry. These metallosurfactants were tested as antitumor agents, and a high cytotoxic effect comparable with doxorubicin was revealed against the M-HeLa and A-549 cell lines. Both complexes were 2 times more active toward the MCF-7 cell line than the breast cancer drug tamoxifen. The cytotoxic mechanism of complexes is assumed to be related to the induction of apoptosis through the mitochondrial pathway.

6.
ACS Omega ; 4(15): 16450-16461, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31616823

RESUMO

The unusual temperature behavior of the electron spin resonance (ESR) spectra and magnetic properties are experimentally observed in copper(II) complexes with a dendritic ligand based on the Boltorn H30 polymer (Perstorp Specialty Chemicals AB, Sweden) functionalized with fumaric acid residues in a molar ratio of 1:6. The ESR spectra at low temperatures show signs of transition to higher spin states at temperatures below 8-10 K, and the temperature dependences of the integral ESR signal intensities and magnetic susceptibility show the positive deviation from the Curie-Weiss law, thereby pointing to the presence of ferromagnetic exchange interactions in the system under study. The values of the exchange interaction parameters are calculated by quantum-chemical simulation of the possible structure of the copper(II) complex when assuming the formation of trinuclear coordination sites embedded in the hyperbranched polymer structure. The results of density functional theory calculations indicate the possibility of ferromagnetic exchange through carboxylate bridges in the trinuclear magnetic clusters, and the calculated values of the exchange interaction parameters make it possible to construct theoretical curves of the temperature dependence of the effective magnetic moment, which satisfactorily fit the experimental data, especially considering that polymers are characterized by disperse molecular weights and chemical structures.

7.
Phys Chem Chem Phys ; 20(18): 12688-12699, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697123

RESUMO

A new surfactant-copper(ii) complex [Cu(L)Br3] (where LBr is 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide) containing a transition metal in the head group has been synthesized and characterized. Physicochemical properties, thermal stability and 3D structure were determined using X-ray diffractometry, UV-vis spectroscopy, simultaneous thermogravimetry and differential scanning calorimetry combined with mass-spectrometry of evolved vapors. The study of the self-assembly and morphological features of associated structures was performed by potentiometry using a bromide ion selective electrode and fluorescence of pyrene and 1,6-diphenyl-1,3,5-hexatriene. The influence of the metal ion embedded into the surfactant structure on critical micelle concentration, degree of counterion binding, aggregation numbers and morphology of the associates was elucidated. High solubilizing capacity and complexation ability of the metal containing micelles with respect to Orange-OT hydrophobic dye and oligonucleotide were determined. Importantly, the functional properties of this metallosurfactant complex are much better compared to those of classical cationic surfactants bearing cyclic and acyclic head groups, LBr and the LBr-CuBr2 mixture. The new cationic metallosurfactant could be recommended for investigation in gene therapy.

8.
Sensors (Basel) ; 13(12): 16129-45, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24287535

RESUMO

An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas/química , Ocratoxinas/química , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...